Microindel detection in short-read sequence data

نویسندگان

  • Peter M. Krawitz
  • Christian Rödelsperger
  • Marten Jäger
  • Luke Jostins
  • Sebastian Bauer
  • Peter N. Robinson
چکیده

MOTIVATION Several recent studies have demonstrated the effectiveness of resequencing and single nucleotide variant (SNV) detection by deep short-read sequencing platforms. While several reliable algorithms are available for automated SNV detection, the automated detection of microindels in deep short-read data presents a new bioinformatics challenge. RESULTS We systematically analyzed how the short-read mapping tools MAQ, Bowtie, Burrows-Wheeler alignment tool (BWA), Novoalign and RazerS perform on simulated datasets that contain indels and evaluated how indels affect error rates in SNV detection. We implemented a simple algorithm to compute the equivalent indel region eir, which can be used to process the alignments produced by the mapping tools in order to perform indel calling. Using simulated data that contains indels, we demonstrate that indel detection works well on short-read data: the detection rate for microindels (<4 bp) is >90%. Our study provides insights into systematic errors in SNV detection that is based on ungapped short sequence read alignments. Gapped alignments of short sequence reads can be used to reduce this error and to detect microindels in simulated short-read data. A comparison with microindels automatically identified on the ABI Sanger and Roche 454 platform indicates that microindel detection from short sequence reads identifies both overlapping and distinct indels. CONTACT [email protected]; [email protected] SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel Method for Detection of Epilepsy in Short and Noisy EEG Signals Using Ordinal Pattern Analysis

Introduction: In this paper, a novel complexity measure is proposed to detect dynamical changes in nonlinear systems using ordinal pattern analysis of time series data taken from the system. Epilepsy is considered as a dynamical change in nonlinear and complex brain system. The ability of the proposed measure for characterizing the normal and epileptic EEG signals when the signal is short or is...

متن کامل

COPS: A Sensitive and Accurate Tool for Detecting Somatic Copy Number Alterations Using Short-Read Sequence Data from Paired Samples

Copy Number Alterations (CNAs) such as deletions and duplications; compose a larger percentage of genetic variations than single nucleotide polymorphisms or other structural variations in cancer genomes that undergo major chromosomal re-arrangements. It is, therefore, imperative to identify cancer-specific somatic copy number alterations (SCNAs), with respect to matched normal tissue, in order ...

متن کامل

Choice of Reference Sequence and Assembler for Alignment of Listeria monocytogenes Short-Read Sequence Data Greatly Influences Rates of Error in SNP Analyses

The wide availability of whole-genome sequencing (WGS) and an abundance of open-source software have made detection of single-nucleotide polymorphisms (SNPs) in bacterial genomes an increasingly accessible and effective tool for comparative analyses. Thus, ensuring that real nucleotide differences between genomes (i.e., true SNPs) are detected at high rates and that the influences of errors (su...

متن کامل

Copy number variant detection in inbred strains from short read sequence data

SUMMARY We have developed an algorithm to detect copy number variants (CNVs) in homozygous organisms, such as inbred laboratory strains of mice, from short read sequence data. Our novel approach exploits the fact that inbred mice are homozygous at virtually every position in the genome to detect CNVs using a hidden Markov model (HMM). This HMM uses both the density of sequence reads mapped to t...

متن کامل

Corrigendum: Discovery and genotyping of structural variation from long-read haploid genome sequence data.

In an effort to more fully understand the full spectrum of human genetic variation, we generated deep single-molecule, real-time (SMRT) sequencing data from two haploid human genomes. By using an assembly-based approach (SMRT-SV), we systematically assessed each genome independently for structural variants (SVs) and indels resolving the sequence structure of 461,553 genetic variants from 2 bp t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bioinformatics

دوره 26 6  شماره 

صفحات  -

تاریخ انتشار 2010